Extracts

Active Lives - Base

ActiveLivesBaseExtract
Base policy extract for active lives. A unique record is represented by

POLICY_ID + COVERAGE_ID.

Columns

POLICY_IDPandasDtype.String

The policy ID of the policy holder.

COVERAGE_IDPandasDtype.String

The coverage ID of the policy holder.

BIRTH_DTPandasDtype.DateTime

The birth date of the policy holder.

GENDERPandasDtype.String

The gender of the policy holder.

TOBACCO_USAGEPandasDtype.Bool

The tabacco usage of the policy holder.

POLICY_START_DTPandasDtype.DateTime

The date coverage starts for the policy issued.

PREMIUM_PAY_TO_DTPandasDtype.DateTime

The date premium payments end for the policy issued.

POLICY_END_DTPandasDtype.DateTime

The date coverage ends for the policy issued.

ELIMINATION_PERIODPandasDtype.Int

The elimination days before benefits are paid for the policy holder.

GROSS_PREMIUMPandasDtype.Float

The policy gross premium amount.

GROSS_PREMIUM_FREQPandasDtype.String

The frequency of premium payments.

BENEFIT_AMOUNTPandasDtype.Float

The benefit amount for the policy holder.

IDI_OCCUPATION_CLASSPandasDtype.String

The IDI occupation class of the policy holder.

IDI_CONTRACTPandasDtype.String

The IDI contract type of the policy holder.

IDI_BENEFIT_PERIODPandasDtype.String

The IDI benefit period for the policy holder.

IDI_MARKETPandasDtype.String

The IDI market for the policy holder.

COLA_PERCENTPandasDtype.Float

The COLA percent for the policy holder (0 if no COLA provided).

Sample Data

import pandas as pd
extract_base = pd.read_csv(
  "./models/extract_models/active-lives-sample-base.csv",
  parse_dates=["BIRTH_DT", "POLICY_START_DT", "PREMIUM_PAY_TO_DT", "POLICY_END_DT"]
)
extract_base
POLICY_ID BIRTH_DT GENDER TOBACCO_USAGE COVERAGE_ID POLICY_START_DT PREMIUM_PAY_TO_DT POLICY_END_DT ELIMINATION_PERIOD GROSS_PREMIUM GROSS_PREMIUM_FREQ BENEFIT_AMOUNT IDI_OCCUPATION_CLASS IDI_CONTRACT IDI_BENEFIT_PERIOD IDI_MARKET COLA_PERCENT
0 M1 1978-08-01 F N BASE 2018-03-06 2048-07-31 2048-07-31 360 10 MONTH 100 M AS TO70 INDV 0.02
1 M1 1978-08-01 F N ROP 2018-03-06 2048-07-31 2048-07-31 360 10 MONTH 100 M AS TO70 INDV 0.02
2 M2 1967-11-03 M N BASE 2018-01-19 2032-11-02 2032-11-02 14 10 MONTH 100 4 AS 18M INDV 0.00
3 M3 1982-06-17 M N BASE 2007-06-19 2047-06-16 2047-06-16 180 10 MONTH 100 M AS TO65 INDV 0.03
4 M3 1982-06-17 M N ROP 2007-06-19 2047-06-16 2047-06-16 180 10 MONTH 100 M AS TO65 INDV 0.03
5 M4 1974-03-08 F Y BASE 2009-10-06 2041-03-07 2041-03-07 90 10 MONTH 100 1 AS TO67 INDV 0.03
6 M4 1974-03-08 F Y ROP 2009-10-06 2041-03-07 2041-03-07 90 10 MONTH 100 1 AS TO67 INDV 0.03
7 M5 1972-12-10 F Y BASE 2003-01-29 2037-12-09 2037-12-09 90 10 MONTH 100 2 AO TO65 INDV 0.03
8 M5 1972-12-10 F Y ROP 2003-01-29 2037-12-09 2037-12-09 90 10 MONTH 100 2 AO TO65 INDV 0.03

Active Lives - ROP Rider

ActiveLivesROPRiderExtract
Rider policy extract for active lives. A unique record is represented by

POLICY_ID + COVERAGE_ID + RIDER_ATTRIBUTE.

Columns

POLICY_IDPandasDtype.String

The policy ID of the policy holder.

COVERAGE_IDPandasDtype.String

The coverage ID of the policy holder.

RIDER_ATTRIBUTEPandasDtype.String

The rider attribute name.

VALUEPandasDtype.Object

The value of the rider attribute.

Sample Data

import pandas as pd
extract_riders = pd.read_csv(
  "./models/extract_models/active-lives-sample-riders-rop.csv",
)
extract_riders
---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-2-a6814d79d345> in <module>
      1 import pandas as pd
----> 2 extract_riders = pd.read_csv(
      3   "./models/extract_models/active-lives-sample-riders-rop.csv",
      4 )
      5 extract_riders

~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)
    686     )
    687 
--> 688     return _read(filepath_or_buffer, kwds)
    689 
    690 

~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
    452 
    453     # Create the parser.
--> 454     parser = TextFileReader(fp_or_buf, **kwds)
    455 
    456     if chunksize or iterator:

~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
    946             self.options["has_index_names"] = kwds["has_index_names"]
    947 
--> 948         self._make_engine(self.engine)
    949 
    950     def close(self):

~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in _make_engine(self, engine)
   1178     def _make_engine(self, engine="c"):
   1179         if engine == "c":
-> 1180             self._engine = CParserWrapper(self.f, **self.options)
   1181         else:
   1182             if engine == "python":

~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in __init__(self, src, **kwds)
   2008         kwds["usecols"] = self.usecols
   2009 
-> 2010         self._reader = parsers.TextReader(src, **kwds)
   2011         self.unnamed_cols = self._reader.unnamed_cols
   2012 

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.__cinit__()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source()

FileNotFoundError: [Errno 2] No such file or directory: './models/extract_models/active-lives-sample-riders-rop.csv'

Disabled Lives - Base

DisabledLivesBaseExtract
Base policy extract for disabled lives. A unique record is represented by

POLICY_ID + CLAIM_ID + COVERAGE_ID.

Columns

POLICY_IDPandasDtype.String

The policy ID of the disabled claimant.

CLAIM_IDPandasDtype.String

The claim ID of the disabled claimant.

COVERAGE_IDPandasDtype.String

The coverage ID of the disabled claimant.

BIRTH_DTPandasDtype.DateTime

The birth date of the disabled claimant.

GENDERPandasDtype.String

The gender of the disabled claimant.

TOBACCO_USAGEPandasDtype.Bool

The tabacco usage of the disabled claimant.

INCURRED_DTPandasDtype.DateTime

The date of disablement for the claimant (i.e., the disablement date).

TERMINATION_DTPandasDtype.DateTime

The termination date of the disabled claimant (i.e., the date benefits will stop being paid).

ELIMINATION_PERIODPandasDtype.Int

The elimination days before benefits are paid for the disabled claimant.

BENEFIT_AMOUNTPandasDtype.Float16

The benefit amount for the disabled claimant.

IDI_OCCUPATION_CLASSPandasDtype.String

The IDI occupation class of the disabled claimant.

IDI_CONTRACTPandasDtype.String

The IDI contract type of the disabled claimant.

IDI_BENEFIT_PERIODPandasDtype.String

The IDI benefit period for the disabled claimant.

IDI_MARKETPandasDtype.String

The IDI market for the disabled claimant.

IDI_DIAGNOSIS_GRPPandasDtype.String

The IDI diagnosis group of the disabled claimant.

COLA_PERCENTPandasDtype.Float16

The COLA percent for the disabled claimant (0 if no COLA provided).

Sample Data

import pandas as pd
extract_base = pd.read_csv(
  "./models/extract_models/disabled-lives-sample-base.csv",
  parse_dates=["BIRTH_DT", "INCURRED_DT", "TERMINATION_DT"]
)
extract_base

Disabled Lives - Rider

DisabledLivesRiderExtract
Rider policy extract for disabled lives. A unique record is represented by

POLICY_ID + CLAIM_ID + COVERAGE_ID + RIDER_ATTRIBUTE.

Columns

POLICY_IDPandasDtype.String

The policy ID of the disabled claimant.

CLAIM_IDPandasDtype.String

The claim ID of the disabled claimant.

COVERAGE_IDPandasDtype.String

The coverage ID of the disabled claimant.

RIDER_ATTRIBUTEPandasDtype.String

The rider attribute name.

VALUEPandasDtype.Object

The value of the rider attribute.

Sample Data

import pandas as pd
extract_riders = pd.read_csv(
  "./models/extract_models/disabled-lives-sample-riders.csv",
)
extract_riders