Extracts¶
Active Lives - Base¶
-
ActiveLivesBaseExtract
¶ - Base policy extract for active lives. A unique record is represented by
POLICY_ID + COVERAGE_ID.
Columns
- POLICY_IDPandasDtype.String
The policy ID of the policy holder.
- COVERAGE_IDPandasDtype.String
The coverage ID of the policy holder.
- BIRTH_DTPandasDtype.DateTime
The birth date of the policy holder.
- GENDERPandasDtype.String
The gender of the policy holder.
- TOBACCO_USAGEPandasDtype.Bool
The tabacco usage of the policy holder.
- POLICY_START_DTPandasDtype.DateTime
The date coverage starts for the policy issued.
- PREMIUM_PAY_TO_DTPandasDtype.DateTime
The date premium payments end for the policy issued.
- POLICY_END_DTPandasDtype.DateTime
The date coverage ends for the policy issued.
- ELIMINATION_PERIODPandasDtype.Int
The elimination days before benefits are paid for the policy holder.
- GROSS_PREMIUMPandasDtype.Float
The policy gross premium amount.
- GROSS_PREMIUM_FREQPandasDtype.String
The frequency of premium payments.
- BENEFIT_AMOUNTPandasDtype.Float
The benefit amount for the policy holder.
- IDI_OCCUPATION_CLASSPandasDtype.String
The IDI occupation class of the policy holder.
- IDI_CONTRACTPandasDtype.String
The IDI contract type of the policy holder.
- IDI_BENEFIT_PERIODPandasDtype.String
The IDI benefit period for the policy holder.
- IDI_MARKETPandasDtype.String
The IDI market for the policy holder.
- COLA_PERCENTPandasDtype.Float
The COLA percent for the policy holder (0 if no COLA provided).
Sample Data¶
import pandas as pd
extract_base = pd.read_csv(
"./models/extract_models/active-lives-sample-base.csv",
parse_dates=["BIRTH_DT", "POLICY_START_DT", "PREMIUM_PAY_TO_DT", "POLICY_END_DT"]
)
extract_base
POLICY_ID | BIRTH_DT | GENDER | TOBACCO_USAGE | COVERAGE_ID | POLICY_START_DT | PREMIUM_PAY_TO_DT | POLICY_END_DT | ELIMINATION_PERIOD | GROSS_PREMIUM | GROSS_PREMIUM_FREQ | BENEFIT_AMOUNT | IDI_OCCUPATION_CLASS | IDI_CONTRACT | IDI_BENEFIT_PERIOD | IDI_MARKET | COLA_PERCENT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | M1 | 1978-08-01 | F | N | BASE | 2018-03-06 | 2048-07-31 | 2048-07-31 | 360 | 10 | MONTH | 100 | M | AS | TO70 | INDV | 0.02 |
1 | M1 | 1978-08-01 | F | N | ROP | 2018-03-06 | 2048-07-31 | 2048-07-31 | 360 | 10 | MONTH | 100 | M | AS | TO70 | INDV | 0.02 |
2 | M2 | 1967-11-03 | M | N | BASE | 2018-01-19 | 2032-11-02 | 2032-11-02 | 14 | 10 | MONTH | 100 | 4 | AS | 18M | INDV | 0.00 |
3 | M3 | 1982-06-17 | M | N | BASE | 2007-06-19 | 2047-06-16 | 2047-06-16 | 180 | 10 | MONTH | 100 | M | AS | TO65 | INDV | 0.03 |
4 | M3 | 1982-06-17 | M | N | ROP | 2007-06-19 | 2047-06-16 | 2047-06-16 | 180 | 10 | MONTH | 100 | M | AS | TO65 | INDV | 0.03 |
5 | M4 | 1974-03-08 | F | Y | BASE | 2009-10-06 | 2041-03-07 | 2041-03-07 | 90 | 10 | MONTH | 100 | 1 | AS | TO67 | INDV | 0.03 |
6 | M4 | 1974-03-08 | F | Y | ROP | 2009-10-06 | 2041-03-07 | 2041-03-07 | 90 | 10 | MONTH | 100 | 1 | AS | TO67 | INDV | 0.03 |
7 | M5 | 1972-12-10 | F | Y | BASE | 2003-01-29 | 2037-12-09 | 2037-12-09 | 90 | 10 | MONTH | 100 | 2 | AO | TO65 | INDV | 0.03 |
8 | M5 | 1972-12-10 | F | Y | ROP | 2003-01-29 | 2037-12-09 | 2037-12-09 | 90 | 10 | MONTH | 100 | 2 | AO | TO65 | INDV | 0.03 |
Active Lives - ROP Rider¶
-
ActiveLivesROPRiderExtract
¶ - Rider policy extract for active lives. A unique record is represented by
POLICY_ID + COVERAGE_ID + RIDER_ATTRIBUTE.
Columns
- POLICY_IDPandasDtype.String
The policy ID of the policy holder.
- COVERAGE_IDPandasDtype.String
The coverage ID of the policy holder.
- RIDER_ATTRIBUTEPandasDtype.String
The rider attribute name.
- VALUEPandasDtype.Object
The value of the rider attribute.
Sample Data¶
import pandas as pd
extract_riders = pd.read_csv(
"./models/extract_models/active-lives-sample-riders-rop.csv",
)
extract_riders
---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
<ipython-input-2-a6814d79d345> in <module>
1 import pandas as pd
----> 2 extract_riders = pd.read_csv(
3 "./models/extract_models/active-lives-sample-riders-rop.csv",
4 )
5 extract_riders
~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, dialect, error_bad_lines, warn_bad_lines, delim_whitespace, low_memory, memory_map, float_precision)
686 )
687
--> 688 return _read(filepath_or_buffer, kwds)
689
690
~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
452
453 # Create the parser.
--> 454 parser = TextFileReader(fp_or_buf, **kwds)
455
456 if chunksize or iterator:
~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
946 self.options["has_index_names"] = kwds["has_index_names"]
947
--> 948 self._make_engine(self.engine)
949
950 def close(self):
~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in _make_engine(self, engine)
1178 def _make_engine(self, engine="c"):
1179 if engine == "c":
-> 1180 self._engine = CParserWrapper(self.f, **self.options)
1181 else:
1182 if engine == "python":
~/work/footings-idi-model/footings-idi-model/.venv/lib/python3.8/site-packages/pandas/io/parsers.py in __init__(self, src, **kwds)
2008 kwds["usecols"] = self.usecols
2009
-> 2010 self._reader = parsers.TextReader(src, **kwds)
2011 self.unnamed_cols = self._reader.unnamed_cols
2012
pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.__cinit__()
pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source()
FileNotFoundError: [Errno 2] No such file or directory: './models/extract_models/active-lives-sample-riders-rop.csv'
Disabled Lives - Base¶
-
DisabledLivesBaseExtract
¶ - Base policy extract for disabled lives. A unique record is represented by
POLICY_ID + CLAIM_ID + COVERAGE_ID.
Columns
- POLICY_IDPandasDtype.String
The policy ID of the disabled claimant.
- CLAIM_IDPandasDtype.String
The claim ID of the disabled claimant.
- COVERAGE_IDPandasDtype.String
The coverage ID of the disabled claimant.
- BIRTH_DTPandasDtype.DateTime
The birth date of the disabled claimant.
- GENDERPandasDtype.String
The gender of the disabled claimant.
- TOBACCO_USAGEPandasDtype.Bool
The tabacco usage of the disabled claimant.
- INCURRED_DTPandasDtype.DateTime
The date of disablement for the claimant (i.e., the disablement date).
- TERMINATION_DTPandasDtype.DateTime
The termination date of the disabled claimant (i.e., the date benefits will stop being paid).
- ELIMINATION_PERIODPandasDtype.Int
The elimination days before benefits are paid for the disabled claimant.
- BENEFIT_AMOUNTPandasDtype.Float16
The benefit amount for the disabled claimant.
- IDI_OCCUPATION_CLASSPandasDtype.String
The IDI occupation class of the disabled claimant.
- IDI_CONTRACTPandasDtype.String
The IDI contract type of the disabled claimant.
- IDI_BENEFIT_PERIODPandasDtype.String
The IDI benefit period for the disabled claimant.
- IDI_MARKETPandasDtype.String
The IDI market for the disabled claimant.
- IDI_DIAGNOSIS_GRPPandasDtype.String
The IDI diagnosis group of the disabled claimant.
- COLA_PERCENTPandasDtype.Float16
The COLA percent for the disabled claimant (0 if no COLA provided).
Sample Data¶
import pandas as pd
extract_base = pd.read_csv(
"./models/extract_models/disabled-lives-sample-base.csv",
parse_dates=["BIRTH_DT", "INCURRED_DT", "TERMINATION_DT"]
)
extract_base
Disabled Lives - Rider¶
-
DisabledLivesRiderExtract
¶ - Rider policy extract for disabled lives. A unique record is represented by
POLICY_ID + CLAIM_ID + COVERAGE_ID + RIDER_ATTRIBUTE.
Columns
- POLICY_IDPandasDtype.String
The policy ID of the disabled claimant.
- CLAIM_IDPandasDtype.String
The claim ID of the disabled claimant.
- COVERAGE_IDPandasDtype.String
The coverage ID of the disabled claimant.
- RIDER_ATTRIBUTEPandasDtype.String
The rider attribute name.
- VALUEPandasDtype.Object
The value of the rider attribute.
Sample Data¶
import pandas as pd
extract_riders = pd.read_csv(
"./models/extract_models/disabled-lives-sample-riders.csv",
)
extract_riders